

IRFQ110

MECHANICAL DATA Dimensions in mm (inches)

LCC28 Ceramic Package

Pin 1 - Gate 1	Pin 2 - Source 1	Pin 3 - Source 1
Pin 4 - N/C	Pin 5 - Drain 1	Pin 6 - Drain 1
Pin 7 - N/C	Pin 8 - Gate 2	Pin 9 - Source 2
Pin 10 - Source 2	Pin 11 - N/C	Pin 12 - Drain 2
Pin 13 - Drain 2	Pin 14 - N/C	Pin 15 - Gate 3
Pin 16 - Source 3	Pin 17 - Source 3	Pin 18 - N/C
Pin 19 - Drain 3	Pin 20 - Drain 3	Pin 21 - N/C
Pin 22 - Gate 4	Pin 23 - Source 4	Pin 24 - Source 4
Pin 25 - N/C	Pin 26 - Drain 4	Pin 27 - Drain 4
	Pin 28 - N/C	

QUAD N-CHANNEL ENHANCEMENT MOSFETS

FEATURES

- HERMETIC CERAMIC SURFACE MOUNT PACKAGE
- LIGHTWEIGHT
- MILITARY SCREENING LEVEL OPTIONS
- SPACE QUALITY LEVELS OPTIONS

APPLICATIONS

- FAST SWITCHING
- MOTOR CONTROLS
- POWER SUPPLIES

ABSOLUTE MAXIMUM RATINGS FOR EACH CHIP(T_{case} = 25°C unless otherwise stated)

V _{DS}	Drain Source Voltage	100V		
Ι _D	Continuous Drain Current	1A		
I _{D @} T _c = 100°C	Continuous Drain Current	0.6A		
IDM	Pulsed Drain Current *	4A		
V _{GS}	Gate Source Voltage	±20V		
PD	Maximum Power Dissipation	4.5W		
$R_{ extsf{ heta}JC}$	Thermal Resistance Junction to Case	27.78°C/W		
T _{J,} T _{stg}	Operating and Storage Temperature Range	-55 to +150°C		

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

IRFQ110

ELECTRICAL CHARACTERISTICS FOR EACH CHIP(T_{case} = 25°C unless otherwise stated)

	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
BV _{DSS}	Drain – Source Breakdown Voltage	$V_{GS} = 0$	I _D = 1mA	100			V
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$	I _D = 250μA	2.0		4.0	v
I _{GSSF}	Gate – Source Leakage Forward	$V_{GS} = 20V$				100	nA
I _{GSSR}	Gate – Source Leakage Reverse	V _{GS} = -20V				-100	
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 80V.	V _{GS} =0			25	μΑ
			T _C = 125°C			250	
Р	Static Drain Source On-State	$V_{GS} = 10V$	I _D = 0.6A			0.70	Ω
R _{DS(on)}	Resistance*	$V_{GS} = 10V$	I _D = 1.0A			0.80	
gfs	Forward Transductance *	V _{DS} = 15V	I _{DS} = 0.6A	0.86			S (Ծ)
C _{iss}	Input Capacitance	$V_{GS} = 0$	V _{DS} = 25V		180		
C _{oss}	Output Capacitance	f = 1MHz			82		pF
C _{rss}	Reverse Transfer Capacitance	-			15		
Q _g	Total Gate Charge	V _{GS} = 10V	V _{DS} = 50V			15	
Q _{gs}	Gate – Source Charge	I _{DS} = 1.0A	-			7.5	nC
Q _{gd}	Gate – Drain Charge					7.5	
t _{d(on)}	Turn–On Delay Time	$V_{DD} = 50V$	I _D = 1.0A			20	
t _r	Rise Time	$R_G = 24\Omega$ (MOSFET switching times are essentially independent of operating temperature.)				25	- ns
t _{d(off)}	Turn–Off Delay Time					40	
t _f	Fall Time					40	
	BODY-DRAIN DIODE RATINGS & O		TICS				
I _S	Continuous Source Current Body	Modified MOS PO	WER			1.0	
	Diode	symbol showing the intergal G				1.0	A
I _{SM}	Source Current* (Body Diode)	P-N junction rectifier.				4.0	1
V _{SD}	Diode Forward Voltage *	I _S = 1.0A	$V_{GS} = 0$			1.5	V
t _{rr}	Reverse Recovery Time	I _F =1.0A	T _J = 25°C			200	ns
Q _{RR}	Reverse Recovery Charge	d _i / d _t = 100A/µ	ιs V _{DD} = 50V			0.83	μC

Notes

* Pulse Test: Pulse Width \leq 300 $\mu s, \, \delta \leq$ 2%

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.